

Input, output and string handling 69

90 INPUT T$
100 IF LEN(T$)=0 THEN GOTO 70
110 PRINT IIWord to CoQnt:1I
120 INPUT CWD$
130 REM ...
140 REM ... Search and Count Words
150 REM ...
160 I = 1 : C=0
170 X = INSTR(I~T$~CWD$)
180 IF X=0 THEN 230
190 C = C+1
200 I = X+1
210 GOTO 170
220 PRINT
230 PRINT
240 PRINT "Word : ";CWD$
250 PRINT "Occurrences :";C
260 END

Line of Text Please:

? Humpty Dumpty sat on a wall. Humpty
Dumpty had a great fall.
Word to Count:
? Humpty

Word : Humpty
Occurrences : 2

Figure 5.3 Word counting using Program 5.4

A portion of a string may be extracted using the MID$() function. The
syntax of this function is given as:

MID$(A$,X LY])

A$ is the string to be worked on, X is the start position in the string, and
Y is the length of the string to be returned. If the last argument is
omitted, the rightmost characters from the start position will be
returned. The way it works can be seen in these examples:

PRINT MID$("Large snakes are horrible" ,7) gives "snakes are
horrible"
PRINT MID$("Fred is a brain surgeon", 11,5) gives "brain"

Input, output and string handling 71

Text Please:

? Some of this TEXT is lower case.

Old Text :
Some of this TEXT is lower case.

Ne~ .. 1 T ext :
:::;OME OF THIS TEXT IS LOWER CASE.

Figure 5.4 Lower/upper case conversion using Program 5.5

If we want to replace the word "trees" with the word "frogs" in the
phrase II All trees are green ", we would use the expression as in Program
5.6.

Program 5.6

10 REM *
20 REM * Simple String Substitution
30 REM :+:

40 A$ = "All t rees a\~e green II
50 B$ = "Frogs"
60 PRINT A$
70 MID$(A$,5,5)=B$
80 PRINT A$

Note that the length of the original string variable is not changed in any
way. If we were to replace IItrees" with the string II great big elephants II ,
the result would be:

II All great big eleph II

MID$ used as a statement is quite inconvenient for normal string
replacement operations: only strings of identical length can be re
placed. By using the other string functions, we can get around this
limitation quite easily. Program 5.7 allows insertion, deletion and
replacement of sections of text - Figure 5.5 illustrates its use.

Program 5.7

10 REM *
20 REM * Insert, Delete, Replace
30 REM *

80 MSX Programming

the left-hand side of the screen. The number of positions moved is
specified by an integer argument, which must be between 0 and 255. If
the argument given is greater than the current screen width, then the
cursor will move down a line.

Another function which can be used with a PRINT command is
SPC(). This prints out a given number of spaces. (Note that with TAB()
only the cursor position is moved, whereas SPC() actually generates a
number of characters and moves the cursor along correspondingly.)
These points are illustrated in Program 5.13 and Figure 5.6.

Program 5.13

10 REM 'I<
20 REM 'I< SPC and TAB
30 REM 'I<
40 SCREEN 0
50 KEY OFF : WIDTH 38
60 FOR I = 0 TO 5
70 PRINT TABCI);"'I<";
80 NEXT
90 PRINT
100 FOR I = 0 TO 5
110 PRINT SPC(I);"'I<";
120 NEXT

C 'I<'I<'I<'I<'I<*')
*' *' *' *' 'I< 'I<

Figure 5.6 Program 5.13 - using SPC and TAB

STRING$ allows a string to be created in which every character is the
same. STRING$() may be supplied with an ASCII code, or a string
argument. PRINT STRING$(35, II * II) prints out a string of 35 asterisks, as
would the command PRINT STRING$(35,42). If a character string
longer than 1 is given as an argument in the second use of STRING$(),
only the first character in the string will be used. If the first character of
a given variable is defined with a double code, STRING$ returns a
string with each element of the string defined by ASCII code 1.

SPACE$() produces a string of a given length which is made up
entirely of spaces. Either of these functions may be used to produce
'fillers' while outputting data. Program 5.14 prints out a series of strings
such that the rightmost characters of each string lie above each other.
This is known as right justification.

Input, output and string handling 81

Program 5.14

10 REM :+:

20 REM :+: Right Justification
30 REM :+:

40 SCREEN 0
50 KEY OFF a WIDTH 40 .
60 PRINT TAB(13); "Right
70 PRINT . PRINT .
80 FOR I = 0 TO 9
90 READ A$
100 FILL = 35-LEN(A$)

Justified"

110 PRINT I;STRING$(FILL~" ");A$
120 NEXT
130 DATA "The Quick Brown Fox"
140 DATA "Hellzapoppin"
150 DATA "Queen Victoria"
160 DATA "Reginald Bosanquet"
170 DATA "The Crown Jewels"
180 DATA "Mr Pye"
1'~0 DATA "Chr i stopher Col umbus"
200 DATA "ABC"
210 DATA "Quo Vadis"
220 DATA "ELstree Studios"

Program 5.15 uses STRING$() with TAB() to produce underlined,
centred text on the screen. The variable W should be set to the current
screen width.

Program 5.15

10 REM :+:

20 REM :+: Centre and Underline
30 REM :+:

40 W = 38 : REM :+: Set Screen Width
50 WIDTH W
60 SCREEN 0
70 LINE INPUT "Text: ";TEXT$
80 L = LEN(TEXT$)
90 C:L~3

100 REM :+:

110 REM :+: Centre
120 REM :+:

130 IDT = (W-L) 12

82 MSX Programming

140 PRINT TABCIDT);TEXT$
150 REM *
160 REM * Underline
170 REM :+:

180 PRINT TAB(IDT);STRINGS(L,195)

Formatted output

One of the most attractive output features of MSX-BASIC is the
powerful PRINT USING command, which surprisingly few people get
around to using. PRINT USING provides a way of obtaining a neat and
uniform output of text and characters. Its general syntax is:

PRINT USING (format string expression) ;(list of print items)

The format string expression controls how the items in the following
list are to be printed. A number of format characters may be placed in
this string, some of which control text output, with the remainder
responsible for numeric output. The characters formatters are:

1. Prints the first character of a string.
2. & Allows one string to be printed embedded into another output

string.
3. \ (n spaces) \ This formatter prints out at least 2 characters from a

string, plus as many characters as there are spaces between the two
backslash symbols. Where there are more spaces allocated than
there are elements in the string to be printed, remaining spaces will
be filled with spaces.

Program 5.16 and Figure 5.7 show how these formatters may be used
for strings.

Program 5.16

10 REM *
20 REM * Charac t ei~ FOl~mattei's

30 REM *
40 SCREEN 0
50 KEY OFF WIDTH "70 ._,
60 PRINT
70 FOR I = 1 TO 3
80 READ AS
90 PRINT USING "~";AS
100 PRINT USING "The to{ Sit lta t ion"; AS
110 PRINT USING "\\";AS

Input, output and string handling 83

120 PRINT USING .. , \";A$ \.

130 PRINT USING "\ \";A$
140 PfUNT STRINCi$ (37 ~ ii_")

150 NEXT I
160 PRINT
170 DATA II Interned i onal"
180 DATA "World"
1'=10 DATA "Ai}JkIJ.lal'd II

I
The International Situation
In
Inte
Internat

W
The World Situation
Wo
Worl
World

A
The Awkward Situation
Aw
Ai.,.lkl}.1
AI .•. ikl.~lard

Figure 5.7 Formatted string output from Program 5.16

There are several numeric formatters - each will now be illustrated
with an example.

1. # Used to print out digits. Each digit of the number to be printed
requires one hash symbol, and if the value to be printed is likely to
be negative it is wise to include an additional symbol. A decimal
point may be used in the formatting string. The number will be
printed in the following manner:

(a) If, on the left-hand side of the decimal point, there are fewer
digits than allowed for in the formatting string, the extra digit
places will be filled with blanks; i.e., right justified. If this is
the case for digits to the right of the decimal point, the trailing

84 MSX Programming

places will be filled with zeros.
(b) Should the magnitude of the number to be formatted be

greater than allowed for in the format string, a '%' sign will be
displayed to indicate overflow.

(c) Numbers to the right of the decimal point will be rounded up
where necessary.

Program 5.17 and Figure 5.8 should help to make this slightly clearer.

Program 5.17

10 REM *
20 REM * Numeric Formatters 1
30 REM *
40 CU:;
50 PRINT TAB (1) ; uRal.';", "Fo~~ma t ted II
60 PRINT TAB(1);STRINGS(3,195),STRINGS
('=1, 195)
70 PRINT
80 FOR I = 1 TO 6
90 READ A
100 PRINT A,
110 PRINT USING u###=###";A
120 NEXT
130 DATA 142.854,93.281,1.62399
140 DATA -43,-112.45,1000.83

142.:354
'=13.281
1 ~623'=19

-112.45
1000.83

142.854
93.281

1.624
-43.000
~t,;-112 .450
%1000.830

Figure 5.8 Program 5.17 - format using '#'

2. - and + Used to indicate the sign of the number printed. '-' is
used at the end of the digit formatting string, and will print out a
minus sign at the end of a number if it is negative. '+. at the
beginning or end of a number indicates the sign of the number
either as positive or negative - useful in that an extra digit symbol

Input, output and string handling 85

need not be included in the format string to allow for negative
values. Program 5.18 and Figure 5.9 illustrate this.

Program 5.18

10 REM '*
20 REt-l :+: Numeric Formatters .-,

.L.

30 REM '*
40 CLS
50 PRINT "Formatted"
60 PRINT STRINI;'$ (9, 195)
70 PRINT
80 PRlt..tT USING "+###.#";42.34
90 PRINT USING "+###.#";-3.357
100 PRINT US I NI;' "###.##-";:434.3
110 PRINT USING "###.##-";-324.48

+42.3
-3.4

434.30
324.48-

Figure 5.9 Program 5.18 - format using '+' and '-'

3. ** Right justify a number using asterisks instead of spaces.
4. ££ Print a pound sterling sign at the beginning of a number. This

symbol represents one digit place.
5. **£ Right justifies a number with asterisks if necessary, and adds

a pound sterling sign.
6. , Print out numbers to the left of the decimal point using the old

convention of separating 1000s, 100000s, etc. with a comma. (A
comma will be placed every three digits to the left of the decimal
point.)

7. Print the number in scientific (exponential) format.

Program 5.19 is a final roundup ofthese formatters in use.

Program 5.19

10 REM :+:

20 REM :+: Numel~ i c Format t ei~S 3
30 REM *

86 MSX Programming

40 CLS
50 PRINT USING "**###.##";1.453
60 PRINT
70 PRINT USING 11££###.##";321.63
80 PRINT
90 PRINT USING "**£##.##";-10.3
100 PRINT
110 PRINT USING "########.";5411284#
120 PRINT
130 PRINT USING "##.#AAAA";141223~
140 END

****1.45

£321.63

*-£10.30

5~411.284

1.4E+05

Figure 5.10 Program 5.19 - mixed formatting

Normal text data may be included before the string formatting
characters in any of the above PRINT USING examples. It is perfectly
permissible to have them used as in Program 5.20.

Program 5.20

10 REM *'
20 REM *' Text and Formatters
30 REM *'
40 PRINT USING "Tax p.a : ###.##";92.53
50 PRINT USING "State : \ \.";
"California"
60 PR I NT US I Nt;' II In i t i a 1 5: !.!. II ; "B i 11 .. ; "
Bloggs

Using a printer for output

If you are fortunate enough to have a printer attached to your system
you are free to use all the MSX-BASIC variants of PRINT. Whatever

Input, output and string handling 87

Tax p.a: 92.53
State Cal if.
Initials: B.B.

Figure 5.11 Program 5.20 - mixing normal and formatted text

you can do with print, you can also do with LPRINT - there is even a
version of PRINT USING called, naturally enough, LPRINT USING.

There is only one function related to printers that needs to be
discussed here - the LPOS() function. Because the MSX computer can
send out data faster than it is mechanically possible to print it (for most
printers that is), an area of RAM, known as the print buffer, is set aside
while printing is carried out. This buffer is filled up with print data by
the CPU ready for the printer to fetch at its leisure. LPOS(G) returns the
position of the print head in this buffer. (It is unlikely that you will use
this particular function often, if at all.)

Printers are quite sophisticated devices, with processors and memory
of their own. Using LPRINT, codes known as escape sequences can be
sent to the printer to produce such things as condensed, enlarged, and
emboldened text. How a printer responds to these different codes
varies from manufacturer to manufacturer - your printer manual will
give you full details.

The most common set of codes used by printers are those created by
Epson - now also used by a large number of other manufacturers. Very
few examples in this book use a printer, but those that do assume the
Epson printer codes.

Summary

ASC(A$), CHR$(X), CSRLIN, INPUT$(X), INSTR([X,]A$,B$)'
LEFT$(A$,X), LEN (A$), LPOS(G), MID$(A$,X[,Y]), POS(G),
RIGHT$(A$,X), SPACE$(X), SPC(X), STR$(X), STRING$(X,A$),
STRING$(X,Y), TAB(X), VAL(A$)

LOCA TE < X) , < Y) [, (1 : G)]

LPRINT [< expression)][separator][, < expression)] ...

MID$(< string variable),X [, Y]) = < string expression)

PRINT USING < string format expression) ; < expression)
[; < expression>] ...

PRINT USING < string format expression) ; < expression)
[; < expression)] ...

6 Data structures

This chapter looks at the way in which a set of data items may be
logically grouped together under one name.

All the variables discussed so far are classed as simple variables in
which one variable name may only reference one single value.

There are many cases where this is undesirable. Assume that a
program was required to store and process a list of 513 names. Such a
program would require 513 independant variables; for example: Nl$,
N2$, N3$, ... , N51il$. In this case, the variable N51il$ would not be
distinguished from the variable N5$. A table of data merely increases
the number of variables required, and the problem of variable naming.

It would be far more convenient if lists and tables of data could be
referenced using a single variable name. The array data structure
permits this.

Data lists

A list of data may be declared as an array variable using the DIM
statement. This statement has two purposes:

1. It defines the number of elements in the list.
2. It defines the data type for each element of the list.

To declare a list of 513 double precision numbers the following
statement could be used:

113 DIM A! (513)

As shown, array variables may be set to a specified type by use of
type declaration characters. Mixed data types are not permitted - an
array may contain data of only a single type.

Each element of the list is referenced usi~g a subscript (or array
index). The array variable A! may be viewed as a series of memory
locations as shown in Figure 6.1. The first element of the array is given
by the subscript '1', or '13', so we would refer to that element with the

	front cover
	blank
	i
	blank
	ii
	blank
	iii
	iv
	v
	vi
	vii
	viii
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	back cover

